本文介绍了一种基于AutoEncoder的无监督方法,用于使用机器产生的声音在工业机器中识别异常。使用声音信号的Log-MelspectRoge表示训练所提出的框架。在分类中,我们的假设是,为异常机器计算的重建误差大于正常机器的重建误差,因为只用于训练AutoEncoder的普通机器声音。选择阈值以区分正常和异常的机器。然而,阈值变化为周围条件不同。为了选择适当的阈值,无论周围如何,我们都会提出一个场景分类框架,可以对底层周围分类。因此,无论周围如何,都可以自适应地选择阈值。实验评估是在工业机器的MIMII数据集上进行,即风扇,泵,阀门和滑轨。我们的实验分析表明,利用自适应阈值,性能显着改善,因为仅使用针对给定周围的固定阈值获得的。
translated by 谷歌翻译
In this paper, a complete framework for Autonomous Self Driving is implemented. LIDAR, Camera and IMU sensors are used together. The entire data communication is managed using Robot Operating System which provides a robust platform for implementation of Robotics Projects. Jetson Nano is used to provide powerful on-board processing capabilities. Sensor fusion is performed on the data received from the different sensors to improve the accuracy of the decision making and inferences that we derive from the data. This data is then used to create a localized map of the environment. In this step, the position of the vehicle is obtained with respect to the Mapping done using the sensor data.The different SLAM techniques used for this purpose are Hector Mapping and GMapping which are widely used mapping techniques in ROS. Apart from SLAM that primarily uses LIDAR data, Visual Odometry is implemented using a Monocular Camera. The sensor fused data is then used by Adaptive Monte Carlo Localization for car localization. Using the localized map developed, Path Planning techniques like "TEB planner" and "Dynamic Window Approach" are implemented for autonomous navigation of the vehicle. The last step in the Project is the implantation of Control which is the final decision making block in the pipeline that gives speed and steering data for the navigation that is compatible with Ackermann Kinematics. The implementation of such a control block under a ROS framework using the three sensors, viz, LIDAR, Camera and IMU is a novel approach that is undertaken in this project.
translated by 谷歌翻译
Advancement in large pretrained language models has significantly improved their performance for conditional language generation tasks including summarization albeit with hallucinations. To reduce hallucinations, conventional methods proposed improving beam search or using a fact checker as a postprocessing step. In this paper, we investigate the use of the Natural Language Inference (NLI) entailment metric to detect and prevent hallucinations in summary generation. We propose an NLI-assisted beam re-ranking mechanism by computing entailment probability scores between the input context and summarization model-generated beams during saliency-enhanced greedy decoding. Moreover, a diversity metric is introduced to compare its effectiveness against vanilla beam search. Our proposed algorithm significantly outperforms vanilla beam decoding on XSum and CNN/DM datasets.
translated by 谷歌翻译
Conversational AI has become an increasingly prominent and practical application of machine learning. However, existing conversational AI techniques still suffer from various limitations. One such limitation is a lack of well-developed methods for incorporating auxiliary information that could help a model understand conversational context better. In this paper, we explore how persona-based information could help improve the quality of response generation in conversations. First, we provide a literature review focusing on the current state-of-the-art methods that utilize persona information. We evaluate two strong baseline methods, the Ranking Profile Memory Network and the Poly-Encoder, on the NeurIPS ConvAI2 benchmark dataset. Our analysis elucidates the importance of incorporating persona information into conversational systems. Additionally, our study highlights several limitations with current state-of-the-art methods and outlines challenges and future research directions for advancing personalized conversational AI technology.
translated by 谷歌翻译
Generative Adversarial Networks (GANs) have received wide acclaim among the machine learning (ML) community for their ability to generate realistic 2D images. ML is being applied more often to complex problems beyond those of computer vision. However, current frameworks often serve as black boxes and lack physics embeddings, leading to poor ability in enforcing constraints and unreliable models. In this work, we develop physics embeddings that can be stringently imposed, referred to as hard constraints, in the neural network architecture. We demonstrate their capability for 3D turbulence by embedding them in GANs, particularly to enforce the mass conservation constraint in incompressible fluid turbulence. In doing so, we also explore and contrast the effects of other methods of imposing physics constraints within the GANs framework, especially penalty-based physics constraints popular in literature. By using physics-informed diagnostics and statistics, we evaluate the strengths and weaknesses of our approach and demonstrate its feasibility.
translated by 谷歌翻译
Cement is the most used construction material. The performance of cement hydrate depends on the constituent phases, viz. alite, belite, aluminate, and ferrites present in the cement clinker, both qualitatively and quantitatively. Traditionally, clinker phases are analyzed from optical images relying on a domain expert and simple image processing techniques. However, the non-uniformity of the images, variations in the geometry and size of the phases, and variabilities in the experimental approaches and imaging methods make it challenging to obtain the phases. Here, we present a machine learning (ML) approach to detect clinker microstructure phases automatically. To this extent, we create the first annotated dataset of cement clinker by segmenting alite and belite particles. Further, we use supervised ML methods to train models for identifying alite and belite regions. Specifically, we finetune the image detection and segmentation model Detectron-2 on the cement microstructure to develop a model for detecting the cement phases, namely, Cementron. We demonstrate that Cementron, trained only on literature data, works remarkably well on new images obtained from our experiments, demonstrating its generalizability. We make Cementron available for public use.
translated by 谷歌翻译
The pattern of pedestrian crashes varies greatly depending on lighting circumstances, emphasizing the need of examining pedestrian crashes in various lighting conditions. Using Louisiana pedestrian fatal and injury crash data (2010-2019), this study applied Association Rules Mining (ARM) to identify the hidden pattern of crash risk factors according to three different lighting conditions (daylight, dark-with-streetlight, and dark-no-streetlight). Based on the generated rules, the results show that daylight pedestrian crashes are associated with children (less than 15 years), senior pedestrians (greater than 64 years), older drivers (>64 years), and other driving behaviors such as failure to yield, inattentive/distracted, illness/fatigue/asleep. Additionally, young drivers (15-24 years) are involved in severe pedestrian crashes in daylight conditions. This study also found pedestrian alcohol/drug involvement as the most frequent item in the dark-with-streetlight condition. This crash type is particularly associated with pedestrian action (crossing intersection/midblock), driver age (55-64 years), speed limit (30-35 mph), and specific area type (business with mixed residential area). Fatal pedestrian crashes are found to be associated with roadways with high-speed limits (>50 mph) during the dark without streetlight condition. Some other risk factors linked with high-speed limit related crashes are pedestrians walking with/against the traffic, presence of pedestrian dark clothing, pedestrian alcohol/drug involvement. The research findings are expected to provide an improved understanding of the underlying relationships between pedestrian crash risk factors and specific lighting conditions. Highway safety experts can utilize these findings to conduct a decision-making process for selecting effective countermeasures to reduce pedestrian crashes strategically.
translated by 谷歌翻译
The process of screening molecules for desirable properties is a key step in several applications, ranging from drug discovery to material design. During the process of drug discovery specifically, protein-ligand docking, or chemical docking, is a standard in-silico scoring technique that estimates the binding affinity of molecules with a specific protein target. Recently, however, as the number of virtual molecules available to test has rapidly grown, these classical docking algorithms have created a significant computational bottleneck. We address this problem by introducing Deep Surrogate Docking (DSD), a framework that applies deep learning-based surrogate modeling to accelerate the docking process substantially. DSD can be interpreted as a formalism of several earlier surrogate prefiltering techniques, adding novel metrics and practical training practices. Specifically, we show that graph neural networks (GNNs) can serve as fast and accurate estimators of classical docking algorithms. Additionally, we introduce FiLMv2, a novel GNN architecture which we show outperforms existing state-of-the-art GNN architectures, attaining more accurate and stable performance by allowing the model to filter out irrelevant information from data more efficiently. Through extensive experimentation and analysis, we show that the DSD workflow combined with the FiLMv2 architecture provides a 9.496x speedup in molecule screening with a <3% recall error rate on an example docking task. Our open-source code is available at https://github.com/ryienh/graph-dock.
translated by 谷歌翻译
Dynamic movement primitives are widely used for learning skills which can be demonstrated to a robot by a skilled human or controller. While their generalization capabilities and simple formulation make them very appealing to use, they possess no strong guarantees to satisfy operational safety constraints for a task. In this paper, we present constrained dynamic movement primitives (CDMP) which can allow for constraint satisfaction in the robot workspace. We present a formulation of a non-linear optimization to perturb the DMP forcing weights regressed by locally-weighted regression to admit a Zeroing Barrier Function (ZBF), which certifies workspace constraint satisfaction. We demonstrate the proposed CDMP under different constraints on the end-effector movement such as obstacle avoidance and workspace constraints on a physical robot. A video showing the implementation of the proposed algorithm using different manipulators in different environments could be found here https://youtu.be/hJegJJkJfys.
translated by 谷歌翻译
Duckiebots是低成本的移动机器人,在研究和教育领域广泛使用。尽管Duckietown平台有现有的自动驾驶算法,但它们要么太复杂,要么表现太差,无法导航多车道轨道。此外,必须将内存和计算资源提供给Duckiebot,以便它可以执行其他任务,例如分布式输入检测。为了满足这些约束,我们构建了一种低成本的自主驾驶算法,能够在两车道轨道上驾驶。该算法使用传统的计算机视觉技术来识别轨道上的中央车道并获得相关的转向角度。然后,转向由PID控制器控制,该PID控制器使Duckiebot的运动平滑。将算法的性能与Neurips 2018 AI驾驶奥运会(AIDO)决赛入围者进行了比较,并且除了一名决赛选手以外,它的表现优于所有球员。我们算法的两个主要贡献是其低计算要求和非常快速的设置,并持续努力使其更加可靠。
translated by 谷歌翻译